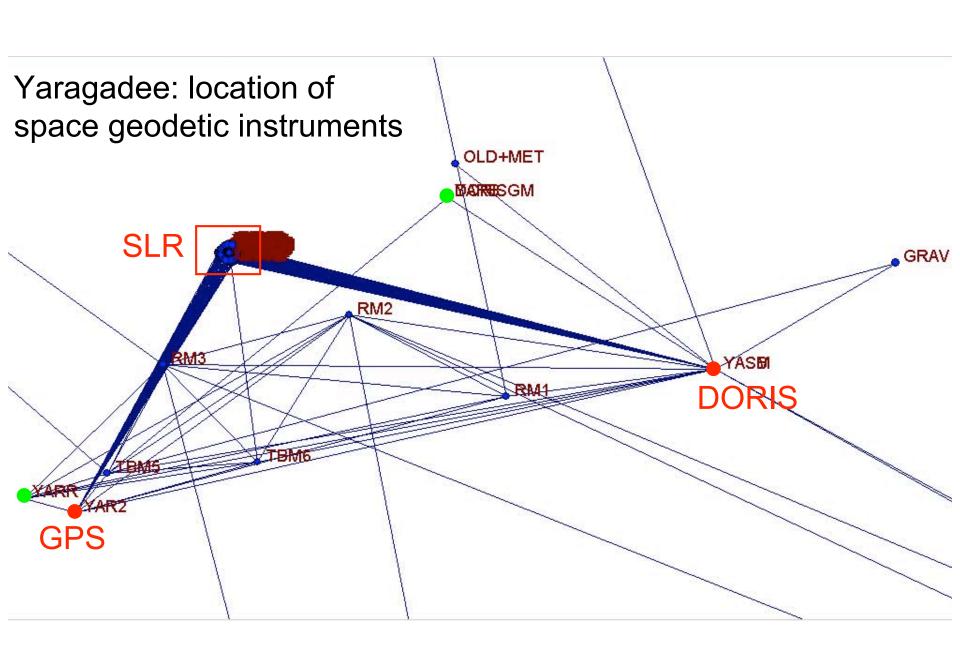
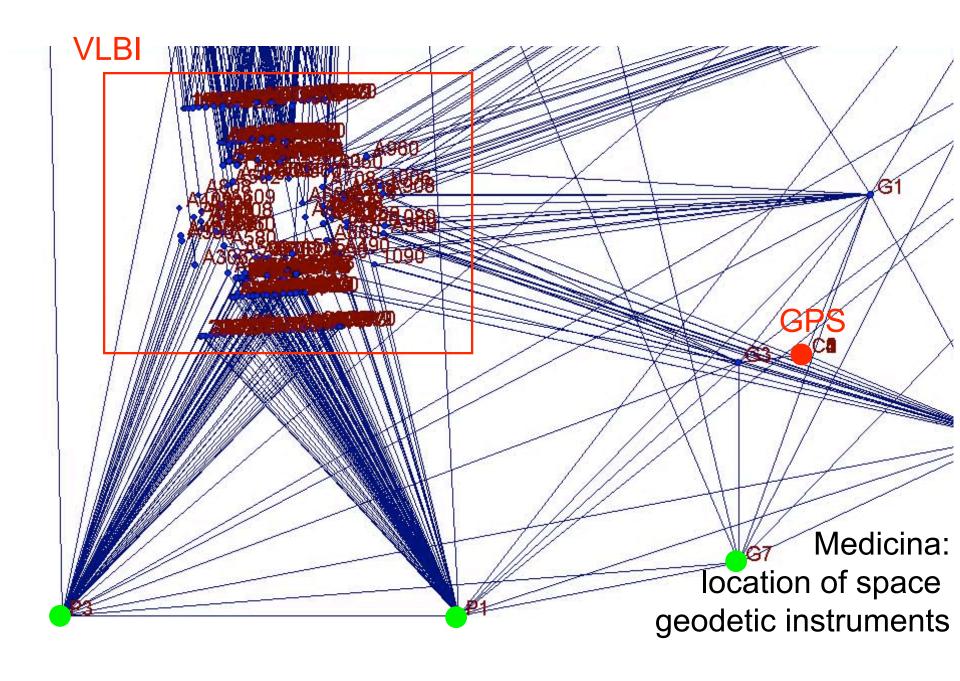
Eccentricity vector estimation

- Three approaches may be adopted:
 - Indirect methods (e.g. Dawson and Johnston 2005, IERS Tech. Note 33; Sarti et al. 2004 J Geodesy)
 - Mixed methods (e.g. Nothnagel et al. 2002, EU TMR Report)
 - Direct method
- Different strategies:
 - Purely terrestrial observations (trilateration, triangulation, spirit levelling)
 - Sideshots on some targets
 - Redundant forward intersection on some targets
 - GPS based surveys
 - mixed

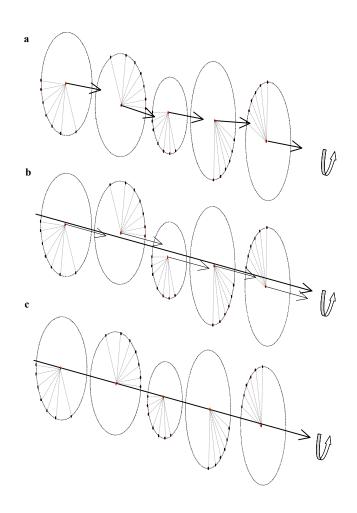
- · A vector between two or more tracking points:
 - Space geodetic instrument reference point (5)
 - · VLBI and SLR: based on fixed and moving axis
 - · GPS and DORIS: Antenna Reference Point
 - Reference marker (M
- · Possible intra-technique eccentricities (between S

Indirect approach: observations

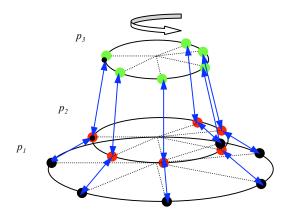

Terrestrial observations


- Targets' positions are recovered with angles, distances and height differences
- Targets' positions are related to the RP with geometric models (conditioning)

GPS observations


- Markers are surveyed with GPS
- A rapid static survey is performed and GPS antenna positions are related to the RP with geometric models (conditioning)

- Axis and Clem&nt are post-processing software for indirect methods
- They are capable to estimate an eccentricity between any space geodetic instrument
- Their performances have been compared on different data sets



- Axis and Clem&nt are post-processing software for indirect observations
- They are capable to estimate an eccentricity between any space geodetic instrument
- Their performances have been compared on different data sets
- The geometric conditioning can be varied

Realization of the axes (SLR and VLBI)

Additional ancillary conditions (SLR and VLBI)

- Axis and Clem&nt are post-processing software for indirect observations
- They are capable to estimate an eccentricity between any space geodetic instrument
- Their performances have been compared on different data sets
- The geometric conditioning can be varied
- The degree of conditioning is important (Dawson et al. 2007, J Geodesy)

Model	Error Invariant Point w.r.t theoretical value		
	Up mm (1σ)	North mm (1σ)	East mm (1σ)
Axisa	3.4	0.2	0.8
	(3.9)	(1.1)	(1.0)
Axis ^b	1.2	0.2	0.2
	(1.7)	(0.9)	(0.8)
Axis ^c	0.1	0.2	-0.1
	(0.9)	(0.8)	(0.8)
Clem&nt ^a	2.1	0.1	0.0
	(1.7)	(1.4)	(1.4)
Clem&nt ^b	2.1	0.1	0.0
	(1.8)	(1.4)	(1.4)
Clem&nt ^c	0.3	0.1	0.0
	(1.4)	(1.4)	(1.4)

a = indipendent circles

b = a + common normal vector

c = a + b + co-linearity

- Axis and Clem&nt are post-processing software for indirect observations
- They are capable to estimate an eccentricity between any space geodetic instrument
- Their performances have been compared on different data sets
- The geometric conditioning can be varied
- The degree of conditioning is important (Dawson et al. 2007)
- · Their output is a SINEX file
- Both software are based on rigorous statistic methods and allow precise estimation of the eccentricity
- Axis and Clem&nt results are consistent!